您好,欢迎来到威客牛网
知识百科
当前位置:首页 > 知识百科 > IT常识 > kmeans原理

kmeans原理

2023/1/23 9:46:06  

kmeans原理如下:

  输入:聚类个数k,以及包含 n个数据对象的数据库。输出:满足方差最小标准的k个聚类。

  K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。

声明:该内容系网友自行发布,所阐述观点不代表本网(威客牛网)观点,如若侵权请联系威客牛网删除。